The 8th International Conference on e-Business (iNCEB2009)
October 28th-30th, 2009

TAMING THE BUSINESS SYSTEMS DEVELOPMENT CRISIS
WITH AGILE DEVELOPMENT METHODS

Roy

Morien

roym(@nu.ac.th

Department of Computer Scie

nce and Information Technology,

Faculty of Science, Naresuan University, Phitsanulok, Thailand

ABSTRACT

Traditional software systems development methods
and project management methods, usually based on a civil
engineering or construction engineering project management
paradigm have been demonstrated as being inappropriate for
the development of software systems.

This paper describes a development method,
generally known as Agile Development, and Agile Project
Management, and draws on what are considered to be
reference disciplines and best practices from general
management, and product development and manufacturing
theory and practice, to provide guidance to the effectiveness
of such methods. Given the ubiquity of software systems in
organisations, adoption of this development approach is
seen as an imperative for IT management to bring software
development under control, to be more cost effective, and to
provide greater business value to the organizations in which
they are embedded.

Keywords: agile development, agile project management.

1. INTRODUCTION

From the earliest days of computer systems development a
particular project management and development method
paradigm has been adopted for the development of computer
software systems. This paradigm was based fundamentally
on the project management methods of civil engineering and
construction engineering. Thus we have the terminology in
software development of ‘systems engineering’. This project
management approach, and the associated development
methodology was fundamentally a phased or serial approach
comprising a significant requirements determination phase
(Analysis) followed by an often lengthy design phase
(Design) followed by a construction phase (Programming)
and then a final Testing Phase prior to handover. Far too
often the handover was accompanied by anger, frustration,
disappointment and conflict. This approach was
fundamentally adversarial, rather than collaborative and
forming a development partnership, as the opposing parties
sought to maximise their benefit, and minimise their cost.
This approach to systems development was favoured
because it apparently provided an appropriate level of certainty
at the outset; certainty of scope, certainty of cost and certainty
of time. This desire for certainty was inevitably a vain quest.

20

This paper describes a development and project
management method, now generally known as Agile
Development, and Agile Project Management. This term
includes Lean Development methods, and Lean Project
Management methods. These approaches are considered to
provide a better and more appropriate approach to systems
development, and project management.

What may be called the reference disciplines of agile
methods theory and practice will be investigated and
discussed, to provide an intellectual basis for these methods.
General management theory and practice is seen to provide
a much better basis for software project management and
systems development methods than the construction and
civil engineering project management practices.

The reason for this is that software development is
seen as a human activity, not a technical activity. Systems
development activity is described as chaordic; a word that
refers to a system that blends characteristics of chaos and
order. Viewing systems development projects as chaordic
activities explains the too frequent failure of the application
of traditional engineering approaches to software
development. This view can then lead us to consider
management practices and theories other than engineering
project management, and engineering management
practices.

This paper considers these various other theory areas.
Best practice manufacturing practices are discussed, and
their applicability to software development is discussed.
Kanban practices, The Model of Concurrent Perception, and
its predecessor Model of Concurrent Engineering are
canvassed as bases for agile development methods.
Leadership studies, the Learning Organization, the post-
industrial management theories are considered for their
relevance and support of this model of ‘soft’ construction
practices.

2. WHAT IS AGILE DEVELOPMENT
Drawing on a variety of sources [1, 2, 3, 4] and synthesisin
the definitions and suggested characteristics in those
sources, Agile development is seen to have these ;&
characteristics: :

k)

project

Agile

is term
Project
lered to
systems

of agile
ed and
iethods.
provide

ent and |

on and

ment is |
ystems §
rd that §
10s and

haordic
lication

oftware |
onsider

neering

gement §

y areas.
:d, and

cussed. |
on, and [

ng are

ethods. §
e post- §
r their f
ruction &

T

esising JE

The 8th International Conference on e-Business (iINCEB2009)

« People Focused: (1) Collaborative: collaboration between
developers and clients is continuous and continual, (2)
Self-Organizing and Self-Managing Teams: Significant
responsibility is handed to the team members, rather than a.
Project Manager, to decide on the work to be done in the
next iteration.

Empirical and Adaptive: Project management practices
that have been published to support “agile development’
practices are described as ‘empirical’, ‘adaptive’,
‘evolutionary’ or ‘experiential’ rather than ‘prescriptive’,
or ‘pre-planned’.

Iterative: Development is achieved through a series of
short iterations each of which produces a useable
enhancement to the system. This provides a frequent and
regular feedback cycle, and opportunities for validation
and verification of successful progress.

Incremental: Development is achieved through a series of
delivered increments to the system, each of which
produces a fully developed, fully tested and certified extra
feature or component of the system.

Evolutionary: the system grows in size, the fequirements
in detail are continuously discovered, and are continually
evolving during the development period.

Emergent: the whole of the system is greater than the
parts. The characteristics of the system emerge as parts are
added.

Just-in-Time Requirements Elicitation: Requirements
are stated in detail ‘just in time’ to develop them, in the
iteration in which those requirements will be implemented.

Knowledge-Based: Development activity is decided upon
by the knowledgeable, self-managing members of the
team, with continual knowledge sharing about the product,
the technology and the progress of the project. Learning
and knowledge sharing are emphasized.

Client Driven, ‘Pull-Based’ development: Only develop
what is asked for by the Client, and when the Client asks
for it.

Agile methods emphasize project transparency, continual
communication and collaboration between project partners.

3. CHAORDIC SYSTEMS & ECOSYSTEMS

In the landmark book Birth of the Chaordic Age [5], Dee
Hock coined the term ‘chaordic’ to describe the "behavior of
any self-governing organism, organization or system which
harmaniously blends characteristics of order and chaos”. 1t
is suggested here that the activity of software development,
as a system, manifests those characteristics. Latterly, the
terminology of ‘the digital ecosystem’ has also indicated
that “The essence of digital ecosystems is creating value by
making connections through collective intelligence. Digital
Ecosystems promote collaboration instead of unbridled
competition and ICT based catalyst effect in a number of
domains to produce networked enriched communities.” 1t is

21

October 28th-30th, 2009

suggested that a software development project is better
described as an ecosystem, with many characteristics of
being a digital ecosystem; ‘promoting collaboration’, ‘a
collaborative environment where species/agents form a ..
coalition for a specific purpose or goal (the development of
a system)’, ‘ creating value by making connections through
collective intelligence’ [6].

Therefore, it is suggested, software development
projects, when defined in this way, defy a management
‘command and control’ style. As Champy [7] states,
variously, ‘You must have a culture that encourages
qualities like relentless pursuit... bottomless resources of
imagination ... and both smooth teamwork and individual
autonomy’ (and therefore) ‘... You cannot have a culture of
obedience to chains of command and the job slot. It just
won't work.” And the best approach to such a system is ‘...
enabling (people); redesigning work so that people can
exercise their skills and capabilities to the fullest extent
possible — then stepping back and letting it happen.’ That is,
let the ecosystem work, let the harmonious blend of order

-.and chaos occur, and create a collaborative environment.

of hierarchical management
structures, and ‘command and control’ style
micromanagement is commented on in Chaordic
Organizations [8] .. ‘in a world that is ever more
interconnected, it becomes more and more clear that no
mechanical, top-down organizational structure based on
control can be effective... the only effective organizations
imaginable are those that are biological, guided by
organizing principles, and that count on the full potential of
people to think, to create, and to self-organize’.

The inappropriateness

4. WHAT IS THE CUSTOMER BUYING?

Simply put, the Customer is buying a development activity.
Traditional thinking seems to be that the Customer is buying a
product. This is not the case! The Customer is buying the time,
the expertise, the understanding, the experience and desire to
provide a satisfactory outcome, of the Developers. The
‘product’ being purchased relies substantially on the
willingness and ability of the participants to be creative, to
collaborate, to learn and to pay heed to matters such as
‘business value’, ‘quality’, ‘useability’, ‘usefulness’, and so on.
The Customer cannot, in any measure of reason, feel that their
role is simply to pay the money, and receive the product, as if
they are buying a new TV set at a department store. The
Customer must participate, and the developers must welcome
that participation. The developers cannot assume that they will
be given a comprehensive, fully detailed, complete and
unchanging specification of requirements that can be used as a
given blueprint for the product they will construct. (Indeed,
some Customers seem to put more thought into buying a TV
set than they do in providing information about their system
requirements).

The activity of software development is carried out over
a period of time by various participants. It is a dynamic, often

The 8th International Conference on e-Business (iNCEB2009)

October 28th-30th, 2009

disorderly process. People do not behave in an orderly, serial,
or linear manner. That is, it is a chaordic activity that requires
an appropriate development method. Equally, it cannot be
managed in the traditional way. The ‘mechanical, top-down
organizational structure based on control’ is not appropriate.

Fundamentally, the construction engineering project is
about building or manufacturing a product. Given the
necessary project planning and design, the builders know
exactly what they are building. They have blueprints, plans,
models, even videos and animations that allow the builders to
view the ‘finished’ product. If this is not the case, then the
project will be a “disaster’ if viewed through traditional eyes;
for example, the Sydney Opera House that went a decade over
time, and a hundred million dollars over budget (yet resulted
in an acclaimed, architectural icon considered to be a
contender for the 7 Wonders of the Modern World). In
comparison, a software development project is product
development, not manufacturing or building. It is almost
impossible to create a blueprint of the proposed ‘product’.
The creativity and problem solving usually occur during the
development, not as part of a settled blueprint at the start.
Given this, it is again suggested that the adoption of the
construction engineering or civil engineering project
management approach was wrong, and inappropriate.

5. PROJECT SUCCESS CRITERIA

In the traditional Waterfall Approach, every attempt is
made, at the start, to impose order and certainty on the
process. Has this been successful? Can it be successful?
Many research projects have identified the unfortunate
statistics of failure, such as only 2% of systems were used as
delivered, and 28% of systems that were paid for but were
never delivered, and 47% of delivered systems were never
used. “...53% of projects overrun cost estimates by 189% or
more (at a cost of US359 billion per year in the US alone)”
[9] This research is supported by a US government study on
software development projects, which revealed that 60% of
projects were behind schedule and 50% were over cost (cited
in [10)). The study also showed that 45% of delivered projects
were unusable.

Some commentators have noted that there has in
reality been a significant level of success in software
development. Many thousands of systems have been
developed within the broadest spectrum of complexity,
without too many disasters being caused. This view is
accepted as valid, but the fact is, many if not most systems
have been developed within an environment of antagonism,
misunderstanding, conflict, disappointment, and have
provided far less business value than hoped for.

An important question is - Why is this? Perhaps it is
because software project management activities are
undertaken in this way in the mistaken belief that what
sometimes works in independent manufacturing or civil
engineering processes will succeed in software
development. This view of software development as a

22

manufacturing process, or an engineering process, has been
significantly deprecated by many authors, even though it
seems to have been a central philosophy upheld by many others
= c.f.: the terminology of “software engineering”. For example,
“...someone grabbed hold of the construction-manufacturing
paradigm which suggests that we can layout an architecture,
design the system, and construct it. Fxperience has shown that
this is a painful and expensive way to develop dinosaurs.” and
“The construction paradigm is the major reason that so many
customers arve dissatisfied...” and ‘We need to shifi from the
old models of software development and maintenance — viz
construction and manufacturing - to a new, more resourceful
model of software development - software evolution’. [11).

6. THE MODEL OF CONCURRENT
PERCEPTION

Can there be an harmonious blend of order and chaos?
Rubinstein et al [12] proffers a model of decision making
behaviour that describes most compellingly the
characteristics of chaordic systems. It is this model; The
Model of Concurrent.. Perception, that seems entirely
appropriate to the activity of software development. The
Model of Concurrent Perception ‘moves us from questions
to answers, from divergent perceptions to convergent
perceptions, from individual creativity to team
implementation, from abstract thinking to concrete action,
from quick experimentation to quality results, from
deliberate chaos to emergent order’ and ‘chaos should be
deliberately created up front’. By ‘chaos’ they mean that
the situation be thrown open to participation and discussion
by all interested stakeholders, and a rich mix of views,
opinions, suggestions, expertise and ideas be aroused, thus
creating a ‘chaotic’ situation from which order will emerge.
‘Questions need to be raised from the outset. When you start
out with divergent questions, you will end up with
convergent answers. When you start out with chaos, you will
end up with order.’

To create ‘certainty’ at the start of a project is to

imply that the future can be controlled, which is a fallacy.

1

Uncertainty is the hallmark of the future. Ours is not to -

know the future, but just to plan for it, including whatever E

contingencies can be foreseen. The Model of Concurrent

Perception says this in this way; ‘This (start with chaos, end .
up with order) is far preferable to the scenario where &
everyone coaslts through a seemingly structured and orderly -
project and the end result is chaos’. This last phrase seems -
to almost perfectly describe the traditional phased software [

development approaches where every effort is made, by the
creation of a detailed and ‘frozen’ requirements
specification, and a detailed plan that is rigorously held to,
to have ‘a structured and orderly projeet’. ‘Plan the work
and work the Plan’ is seemingly the motto of the
‘successful’ project manager. Research has shown that the
end result of such an approach seems too often to end in
chaos, characterized by disappointment, rejection and

been
sh it
thers
ple,
wring
ture,
that
and
aany
¢ the
- Viz

ceful

aos?
king
the
The
irely
The
tions
‘gent
team
‘tion,
from
d be
that
ision
ews,
thus
rge.
start
with
will

is to
acy.
it to
ever
Tent
end
here
lerly

ems [§
vare @
"the B

ents
1 to,

vork I

the
the

iin |
and :

The 8th International Conference on e-Business (iNCEB2009)

refusal to use the resultant system. The statistics about
project outcomes success referred to previously clearly
indicate a descent into chaos from a starting point of
imposed order and directed certainty. Assuming that these
systems were developed using a traditional phased
approach, which is not an unreasonable assumption, we can
see relevance and correctness of the situation of *seemingly
structured and orderly project’ where the ‘end result is
chaos .

There are examples of highly successful projects
from other than software development that seem to be well
described by the Model of Concurrent Perception (and its
predecessor Model of Concurrent Engineering) including
the development by the Boeing Corporation of the 777
airliner, and the development of the Lexus luxury motor
vehicle by the Toyota Company.

In the development of the 777 airliner, for example,
the project manager ‘created more than 200 design/build
teams with members from design, manufacturing, suppliers
and customer airlines — everyone from pilots 1o baggage
handlers’. [13]. All project teams and members were urged
to ‘share early and share often’. The project scenario being
painted here is clearly the ...start out with chaos’ situation,
which, in this case, resulted in the creation of a highly
successful airliner which is clearly the manifestation of ‘you
will end up with order’ theory of the Model of Concurrent
Perception.

In the development of the Lexus motor vehicle, as
described in Liker [14] it is stated that ‘(in vehicle design)
Effectiveness starts with what is popularly being called the
‘fuzzy front-end”. The project leader stated ‘The end resuit
was not just my effort alone, but all the people along the
way who originally opposed what I was doing, and who all
came around and were able to achieve all these targets that
I had set in the first place’. The Lexus motor vehicle is
known as a very popular model in the marketplace. Various
aspects of the Model of Concurrent Perception were clearly
able to be seen here. ‘Questions need to be raised from the
outset’; indeed many questions were raised about design
issues, even about the need for the model. ‘When you start
out with divergent questions, you will end up with
convergent answers’ was demonstrated by the people ‘who
all came around’ and achieved the design targets. ‘When
You start out with chaos, you will end up with order .

7. THE LEARNING ORGANIZATION

Elsewhere we can go to the literature about a management
discipline outside IS and Computer Science to seek insight
into the best way to develop software systems. In this case,
to view the software development function in terms of being
a Learning Organization.

The concept and practice of the learning organization
is amply discussed in Senge, in his book entitled ‘The Fifth
Discipline-The Art & Practice of the Learning
Organization‘[15]. Peter Drucker defined a leaning

23

October 28th-30th, 2009

organization being necessary because ‘The function of the
society of post-capitalist organisations ... is to put knowledge
1o work ... it must be organised for constant change’.

The Core Capabilities of a Learning Organization are
summanized as (1) Creative orientation, (2) Generative
discussion, and (3) Systems perspective (Maani & Cavana,
[16] at p138.). These concepts are elaborated to mean:

e Creative orientation: The source of a genuine desire to
excel. .. The source of an intrinsic motivation and drive to
achieve ... favors the common good over personal gains.

¢ Generative discussion: A deep and meaningful dialogue
to create unity of thought and action

e Systems perspective: The ability to see things
holistically by understanding the connectedness
between parts.

Although Senge published nine years before
Rubinstein & Firstenberg ([12, op.cit.] it is interesting to see
the many similarities between their discussion. In discussing
Team Learning, Senge states (at p.236) ‘team learning (has)
the need to think insightfully about complex issues ... 1o tap
the potential of many minds’ Other statements about team
learning include “.. team learning involves mastering the
practices of dialogue and discussion ... there is a free and
creative exploration of complex and subtle issues ... '.

This implies, it is suggested, the chaos that is present
in the participant behaviour modelled by the Model of
Concurrent Perception, and then the learning team
converges on the order that is the hoped for outcome of

‘divergent perceptions to convergent perceptions’.

Similarly, when Maani & Cavana [16, op.cit.] refer
to ‘Generative discussion: A deep and meaningful dialogue
to create unity of thought and action’, we can reasonably
interpret the *deep and meaningful dialogue ' to be the chaos
and the ‘create unity of thought and action’ to be the
emergence of order, all of which seems readily defined by
the Model of Concurrent Perception.

An interesting if less than proven concept is known
as ‘the wisdom of the herd’, or a little more eloquently as
“collective wisdom’ [17]. Applying this to agile methods,
we see the efficacy of team self-organization, where
planning and development decisions are made by the
collective team, not by a commanding and controlling
project manager.

8. LEAN PRODUCT DEVELOPMENT

Lean production was a manufacturing methodology
developed originally by the Toyota Motor Company. It is
also known as the Toyota Production System. The goal of
lean production and lean product development is stated as
‘to get the right things to the right place at the right time, the
first time, while minimizing waste and being open to
change’.

The Toyota Production System was masterminded by
Taiicho Ohno who is credited with developing the principles

-

The 8th International Conference on e-Business (iNCEB2009)
October 28th-30th, 2009

of lean production, discovered that in addition to eliminating
waste, his methodology led to improved product flow and
better quality.

The overall management philosophy and practice of
Toyota is stated as 14 management principles in Liker [14,
op.cit.]. Instead of devoting resources to planning what
might be required for future manufacturing, Toyota focused
on reducing system response time so that the production
system was capable of immediately changing and adapting
to market demands. This became known as a Kanban, and
otherwise as Lean Product Development, under the general
term The Toyota Production System. The principles of lean
production enabled the company to deliver on demand,
minimize inventory, maximize the use of multi-skilled
employees, flatten the management structure and focus
resources where they were needed. Ten rules of lean
production were stated. These were:

1. Eliminate waste

Minimize inventory

Maximize flow

Pull production from customer demand
Meet customer requirements

Do it right the first time

Empower workers

Design for rapid changeover

. Partner with suppliers

10. Create a culture of continuous improvement

Techtarget Network [18]

RN R

Summarising the ‘success attributes’” of the Toyota
Production System:
¢ Fostering an atmosphere of continuous learning and
improvement

¢ Satisfying customers (and eliminating waste)

e Quality first and consistently

¢ Grooming leaders from within the organization

e Teaching employees to become problem solvers

¢ Growing together with suppliers and partners for
mutual benefit.

9. LEAN DEVELOPMENT IN SOFTWARE
PROJECTS

These principles have been applied to software project
management in this manner: [13, op.cit. 19]

In In software
Manufacturing - development
Reduces Inventory No unnecessary and potentially obsolete

and invalid documentation, or code

Surfaces impediments in the
development process quickly, including
bottlenecks, waiting etc.

Improves Flow

No code is developed that is not
demanded by the client that may be
unusable and not useful

Prevents Overproduction

24

Places control at the
operational level

Self Managed teams empowers
developers and enhances creativity

Creates visual scheduling
and management of the
process

Transparency in the development process
and up-to-date information available to
all.

Improves responsiveness
to change in demand

Satisfies contemporary client
requirements rather than potentially

obsolete requirements

Minimizes risk of
inventory obsolescence

Developed code is always needed, and
does not become obsolete and
unnecessary.

10. LEADERSHIP AS A WINNING

STRATEGY

In 1995, a team from New Zealand won the famous and
prestigious yacht trophy, called the Americas Cup [16,
op.cit.). This was only the 2nd time in 146 years that a non-
US syndicate had won the trophy ... Australia had won it
once before.

The amazing thing was that the NZ yacht won 41 of
the 42 races that they competed in over the 6 months
competitive campaign. What was even more amazing was
that the NZ syndicate had a very limited budget, and a
limited amount of time to develop their record-winning boat.

How did they do it? There are some valuable lessons
here in this experience and success that are very applicable
to software development. Indeed, a significant contribution
to the success of this syndicate was the evolutionary
development of a computer system of sailing models that
assisted in preparing the boat for competition. The success
has been attributed to:

e The inspirational leadership of the syndicate Leader

e The strong sense of community within the syndicate
team

e The openness of communication between team

members
e ‘Customer’- led development — the sailors!!!

e The sustained rate of continual improvement (of the
boat speed)

e The level of commitment and purpose by all
participants

This syndicate exhibited many of the valuable traits
of a ‘learning organization’. The contribution of ‘leadership’
to this outstanding success also cannot be underestimated.
Without the ‘inspirational leadership’ of the syndicate
financier and leader, all else may well have been in vain.
The ‘vision’ was developed and pursued by the syndicate
leader, providing the authority to proceed, with the team
behaving in a highly collaborative and self-managed
manner, iteratively (that is, from race to race) providing
incremental improvements to performance based on an
‘inspect and adapt’ philosophy, wherein the system
‘evolved’.

nd
16,
an-
1t

of
ths
vas
l a
at.
ms
ble
on

aat
2SS

The 8th International Conference on e-Business (iNCEB2009)

11. KANBAN - THE PRACTICE OF
SIGNS AND JUST-IN-TIME

Drawing from a leading book on the topic of Kanban [19]
the introductory chapters about Kanban are paraphrased
here, and the text is applied to software development.

Kanban is about scheduling for manufacturing.
The purpose of Kanban is to ensure the availability of
supplies to the production line ‘just in time’ when those
parts are needed. Kanban is a small batch oriented system
of supply chain, based on a ‘pull’ or demand driven
supply of product. Kanban uses a simple system of signs
to indicate the need for another batch of inputs.

These are the four main and essential
characteristics of Kanban; that 1is, Just-in-Time
scheduling, small batch oriented, demand driven or ‘pull’
driven demand, and simple radiating of information by a
simple system of signs. Kanban essentially eschews
elaborate and complex MRP systems and detailed
planning, in favor of simplicity. Kanban was pioneered by
the Toyota Motor Company and was part of the system of
manufacturing, now known as Lean Manufacturing that
brought Toyota to the position of being the world’s
leading and most profitable motor vehicle manufacturing
company.

The production process using Kanban controls
produces product only to replace the product consumed by
customers; that is, demand driven or pull-driven.
Applying this to the software development process, we
can say that a ‘kanban’ approach to software development
means that only software with characteristics requested by
the client will be developed. This aspect of ‘software
kanban’ eradicates what 1s known as gold-plating, where
developers include apparently sophisticated ‘bells and
whistles’ that may only be interesting to the developer,
which have not been requested by the client, and may
never be used. Research has indicated that up to 60% of
features in a software package are never used by the
client. It is therefore a waste of time, money and effort to
include them.

The ‘Just-in-Time’ supply philosophy of Kanban
in manufacturing has resulted in substantial cost savings
in the maintenance of on-hand inventories, and the
management of those inventories. Significant wastage can
occur if existing inventories become unusable because of
changing demand patterns. Applying this philosophy to
software development can see a substantial change in the
development process, which, in the traditional manner,
produces huge quantities of ‘product’; in this case
requirements documentation, as an example, at the start of
the development process, and this inventory of product
becomes obsolete quickly, given the inevitable change in
requirements brought about by two major factors (as
discussed previously); that is, it is impossible to fully and

25

October 28th-30th, 2009

comprehensively detail all requirements at the start of the
project, and the equally inevitable fact that requirements
will change during the development process, as more is
realized, new ideas created, and the shortcomings of the
initial requirements documents understood. Another
inventory item in the software development process is
unrequested code, created ‘just in case’ the client requests
it, or ‘just in case’ it might be useful in the future. Kanban
philosophy and practice suggests that it would be far
better to replace ‘just in case’ development with ‘just in
time’ development.

Kanban, in the manufacturing process, replaces the
daily scheduling activities necessary to operate the
production process, and thereby removes the need for
substantial production planning staff and continuous
monitoring of the production process. This places control
at the ‘value-added’ level of production and empowers the
operators to control the line. Applying this to the ‘agile’
development process of software development, the ‘self-
managing team’ approach to software development, this
creates a more creative and productive development
environment.

In agile development, the insistence on highly
visible ‘information radiators’, and the essential
transparency of project ‘progress’ is equivalent to the
Kanban use of visible but simple signs and signals that are
obvious to everyone, and that flag progress and demand in
a transparent and effective manner.

The highly iterative style of agile methods, where
work is planned and done and delivered in periods as
short as one week, is emulating the Kanban practice of
small batches. Frequent adoption of a ‘small batch” of
work to be achieved in a short period of time is seen as a
highly successful approach.

The benefits of Kanban scheduling, as tabled in
this book, include [20]:

e Physical: It is a physical card. It can be held in the
hand, moved, and put into or onto something.

e Limits WIP: It limits WIP (Work-In-Process), i.e.
prevents overproduction.

e Continuous Flow: It notifies needs of production
before the store runs out of stock.

e Pull: The downstream process pulls items from the
upstream process.

o Self-Directing: It has all information on what to do
and makes production autonomous in a non-
centralized manner and without micro-management.

* Visual: It is stacked or posted to show the current
status and progress, visually.

s Signal: Its visual status signals the next withdrawal
or production actions.

» Kaizen: Visual process flow informs and stimulates
Kaizen.

The 8th International Conference on e-Business (iNCEB2009)

October 28th-30th, 2009

Whilst warning against attempts to apply all of the
aspects of a manufacturing control process to software
development, in this view of what the author terms Agile
Kanban, the focus is more on enabling tasks, "Visual" and
“Self-directing,” so as to help the team become autonomous
and improve their own process. In order to make the process
continuously flow as well as to limit WIP, “iteration
meetings" are needed to communicate the information. The
use of the Kanban process control approach has been proven
as being highly effective in improving process efficiency and
efficiency in manufacturing. It is possible to apply at least
some of these principles and practices to software
development, and applying its principles to software
development provides a significant support to the use of
Agile methods in software development, supporting the
assertion that agile methods are an effective and efficient
way to develop software systems, reducing cost and time to
market, improving quality and business value, and creating a
significantly greater level of user satisfaction with the
outcome.

12. CONCLUSION

It is suggested that the traditional software
development methodological and project management
paradigms based on civil engineering and construction
engineering practices are deficient and inappropriate. A
different paradigm that acknowledges that software system
development activities are essentially ‘chaordic’, and require
leadership and behavior styles appropriate to this type of
project ecosystem, has been proffered; Agile Development.

Support for the appropriateness and efficacy of Agile
Development has been drawn from a variety of sources and
reference disciplines, drawing on the experience of highly
successful companies and ventures, and the theories and
practices of management science, such as Leadership studies,
The Learning Organization, Kanban, The Model of
Concurrent Perception, Lean Manufacturing and Lean
Processes and so on. Taken together, and drawing on the
characteristics of these various areas of theory and practice
suggests strong support for the proposition that Agile
Methods are very well based on leading management
theories and practices, and are indeed a highly effective and
efficient way to develop software systems. Given the
ubiquity of computer systems in today’s world, and the
almost existential reliance on computer systems in every
operational organization, the proposition is stated that
adopting and implementing Agile methods of software
development, and software project management, is an
imperative and can be adopted with confidence and impunity
by modern organizations.

REFERENCES & BIBLIOGRAPHY

[1] Agile Alliance http://www.agilealliance.org, accessed
July 30™, 2009

[2] Agile Manifesto, http://agilemanifesto.org/, Accessed
July 30", 2009

[3] Mahanti, A. (2006). ‘Challenges in enterprise
adoption of agile methods - A survey’. Journal of
Computing and Information Technology 14(3): 197-
206.

[4] Melnik, G. and F. Maurer (2005). ‘Agile methods: A
cross-program investigation of student's perceptions
of agile methods’. ICSE'05, ACM Press, IEEE.

[5] Hock, Dee, Birth of the Chaordic Age, Visa
International, 1999

[6] http://www.business.curtin.edu.au/business/research/
debii-tier-1-institute accessed July 30, 2009

[7] Champy, James, Reengineering management: The
Mandate for New Leadership, Harper-Collins
Publishers, 1995 ‘

[8] ‘Chaordic Organizations’,
www.paricenter.conV/library/papers/Chaordic_organiz
ations.pdf, accessed July 20, 2009

[9] Standish Group (1994). The Chaos Report (1994)
[online]. Available WWW:
http://www.standishgroup.com/sample_research/chaos
1994 _1.php Accessed December 14th, 2003

[10] Garmus, David and David Herron (2001), Estimating
Software Earlier and More Accurately, excerpted from
Function Point Analysis Measurement Practices for
Successful Software Projects, Addison-Wesley
Information Technology Series, 2001.

[11] Arthur, L J., Rapid Evolutionary Development:
Requirements, Prototyping & Software Creation,
Wiley, 1992

[12] Rubinstein, Moshe F. and Iris R Firstenberg, The
Minding Organisation, John Wiley & Sons, 1999.

[13] Mary,Tom Poppendieck, Implementing Lean
Software Development: From Concept to Cash,
Pearson Education, 2007

[14] Liker, Jeffrey K., The Toyota Way, McGraw-Hill, 2004

[15] Senge, Peter, The Fifih Discipline — The Art &
Practice of the Learning Organization,

[16] Maani, Kambiz E. & Robert Y. Cavana, Systems
Thinking, Systems Dynamics — Managing Change and
Complexity, Pearson Education NZ, 2007

[17] ‘the wisdom of the herd’,
http:/en.wikipedia.org/wiki/Collective_wisdom,
accessed July 30%, 2009

[18] (Techtarget Network, 2005)
http://searchcio.techtarget.com/sDefinition/0,.sid19_gc
i810519,00.html

[19] Gross, John M. and Kenneth R. Mcinnis, Kanban Made
Simple, American Management Association, 2003.

[20] http://www.infoq.com/articles/hiranabe-lean-agile-
kanban#content, accessed July 15, 2009

26

